與I2C字樣與含意相近的,I2S的全稱是Inter-IC Sound,意指在晶片間傳遞的音源,至於會有哪些晶片需要相互傳遞數位音源,這包括了數位信號處理器(DSP)、類比數位轉換晶片(ADC)、數位類比轉換晶片(DAC)、數位過濾晶片(Digital Filter)、CD更錯晶片(Error Correction)、數位錄音晶片(Digital Recording)、數位電視音源晶片(Digital TV)、數位錄音帶(Digital Audio Tape)等,另外全球定位系統晶片(GPS)、數位廣播晶片(DAB)等也經常用上,或者SPDIF與I2S兩種介面都提供,前者適合外傳、外接,後者方便數位音源在機內進行再傳遞、再轉換、再處理。
簡單而言I2S有3條線路,稱呼與功用大體如下:
■SCK(continuous Serial Clock):串列傳輸的時脈線,專精、獨立的時脈傳遞。
■SD(Serial Data):串列傳輸的資料線,傳遞兩個聲道的數位音源資訊。
■WS(Word Select):字元選擇線,字元(Word)在此所指即是音源聲道(Channel)。
這3條線路的邏輯電壓準位等相關要求,全然比照一般TTL標準,即0V∼0.8V為Lo、2.4∼5.0V為Hi,就連源出(Source)與汲入(Sink)的電流值標準也類同於TTL,事實上I2S本就發創於標準TTL仍相當盛行的80年代,因此電氣特性的表現過於「基本」自然不足為怪。
接著我們要說明I2S的連接,一般而言I2S是一對一的連接,即音源發送端與音源接收端直接相連,且SD的資料傳輸永為單一方向不會改變,並非是雙向式傳輸。進一步的,到底由誰來發送SCK時脈呢?無論發送端或接收端都可擔任,不過必須在設計之初就決定由哪端發出,且在運作過程中無法再行變換。
同樣的,WS聲道控制線路也要一起頭就決定由誰來輸出,當WS輸出0時表示SD將要輸出的是Channel 1(或稱Channel A)的左聲道音源,反之輸出1則是Channel 2(或稱Channel B)的右聲道音源。簡單來說,3線都是單方單向的傳遞線路。
雖然在I2S介面上有收有發,但誰是I2S介面的主控者(Master)、受控者(Slave)呢?這取決於線路的配置法,凡是對外輸出SCK線路訊號的即是I2S的主控者,至於SD、WS在設計上可決定由主控端發送,也可決定由受控端發送,毫不影響主控、受控的角色。
另外也有一種比較特別的搭配組態,即是由一個超然中立的控制端來充當主控者,由它來廣播SCK時脈訊號,同時也由其來掌控及發送WS訊號。
附註:一般而言主控者選擇擔任發送端後就無法擔任接收端,或擔任接收端後就無法擔任接收端,不過若真的希望角色能互換,也是允許用軟體對接腳進行輸出入功用的再設定、轉換來實現。
▲圖說:誰負責SCK的對外發送,誰就是I2S介面中的主控者,無論發送器、接收器、控制器都可以是主控者。(圖片來源:Semiconductors.Philips.com)
刻意安排先行傳輸MSB的用意
接著我們要說明收端兩端如何傳遞SD資訊,此即是以SCK時脈為基準,當SCK由Lo轉成Hi(即上升緣觸發)時,發送端的SD資訊就會被接收端給閂鎖(Latch)。一旦Latch後,下一筆資料可選擇在任何時間進行變換,I2S對資料的變換時機沒有強制的要求。至於WS,一樣可在任何時間進行變化,但接收端的取樣與資訊認定一樣發生在上升緣觸發的時間點。
值得注意的是,WS的0、1狀態轉變時,同一上升緣的SD資訊依然是WS未轉態前的聲道資訊,確定WS狀態轉變後,下一個上升緣時SD線路才正式傳輸WS新指定聲道的音源資訊,畢竟接收端在接獲聲道變換的訊息後,需要一點時間進行內部邏輯機制的調整與準備,無法即時接收反應。
再來是壓軸部分:SD的數位音源傳輸,SD的串列傳輸順序是先傳遞最高位元(MSB,亦稱最高影響性位元),最後才傳遞LSB,或許有人認為這只是設定安排上的不同,應當也可以將順序反過來傳遞,但其實不然,以MSB為最優先傳送實有其充分理由。
I2S希望做到收發兩端不需任何的事先溝通協議就能正常進行傳遞,而所謂事先協議指的是讓兩端取得默契,如接下來的傳輸將是每聲道、每取樣多少位元解析度的資訊,是16-bit?20-bit?還是24-bit?
I2S之所以能不用事先溝通就可以直接傳送,就在於使用MSB先傳的特性,如果發送端是20-bit,接收端是更高解析度的24-bit,那麼傳送完20bits後的剩餘4bits可以由接收端自行補「0」,反過來說,若接收端只有16-bit,則傳送過來的20bits中,最後的4bits資訊可以直接丟捨忽略。同樣的道理並不限於上面所述的16-bit、20-bit、24-bit,只要有解析度位元數差距的情形都一律適用。
▲圖說:I2S在進行WS邏輯位準的改變後,SD便在下一個SCK時脈時開始傳輸另一聲道的數位音訊,並從MSB開始傳遞。(圖片來源:Semiconductors.Philips.com)
至於I2S可以含在多少音源資訊?以基本規範而言,一個時脈400nS,因此傳輸頻率為2.5MHz,等於可傳送2.5Mbps,如此約可傳遞24-bit解析度、48kHz取樣率的雙聲道音源,因為:
24bits x 48000Hz x 2Channel = 2304000bits/Sec = 2.304Mbps
2.5Mbps減去2.304Mbps後,只剩200kbps不到的傳輸頻寬,實在無法再傳遞什麼。不過,由於I2S在時序上的制訂都盡可能採行相對性、比例性的定義,以一個時脈週期為基準並稱為T,高低準位的時間最少須大於0.35T,延遲時間必須小於0.8T,上升時間必須大於0.15T等,這表示整個傳輸可以單純地透過時脈頻率拉升來加速資料傳量,不需要為提昇傳輸而有太多的環節顧慮。
附註:一般音樂CD的解析度為16-bit,取樣率為44.1kHz,但也可增至更優質的20-bit、24-bit,而專業的DAT其取樣率為48kHz,而DSR稍低,為32kHz。
▲圖說:I2S在進行WS邏輯位準的改變後,SD便在下一個SCK時脈時開始傳輸另一聲道的數位音訊,並從MSB開始傳遞。(圖片來源:Semiconductors.Philips.com)
至於I2S可以含在多少音源資訊?以基本規範而言,一個時脈400nS,因此傳輸頻率為2.5MHz,等於可傳送2.5Mbps,如此約可傳遞24-bit解析度、48kHz取樣率的雙聲道音源,因為:
24bits x 48000Hz x 2Channel = 2304000bits/Sec = 2.304Mbps
2.5Mbps減去2.304Mbps後,只剩200kbps不到的傳輸頻寬,實在無法再傳遞什麼。不過,由於I2S在時序上的制訂都盡可能採行相對性、比例性的定義,以一個時脈週期為基準並稱為T,高低準位的時間最少須大於0.35T,延遲時間必須小於0.8T,上升時間必須大於0.15T等,這表示整個傳輸可以單純地透過時脈頻率拉升來加速資料傳量,不需要為提昇傳輸而有太多的環節顧慮。
附註:一般音樂CD的解析度為16-bit,取樣率為44.1kHz,但也可增至更優質的20-bit、24-bit,而專業的DAT其取樣率為48kHz,而DSR稍低,為32kHz。
▲圖說:I2S介面對時序的規範要求都盡可能採行相對性、比例性的設計,以SCK的一個時脈週期為T,其餘相關要求都以T為基準比例。(圖片來源:Semiconductors.Philips.com)
結論
在今日大談5.1、6.1的多聲道時代,以及Intel提出解析度高達32-bit的高清晰度音效(HD Audio)的時代,各位可能會對筆者在此所談論的雙聲道、24-bit感到不耐,然各位仔細想,眼前可有解析度高達32-bit的錄音麥克風?即便有可有任何音樂內容是以32-bit取樣錄製?(18-bit已是極優)很明顯的,24-bit依舊是萬中挑一的嚴選,一般多為16-bit、20-bit,就連DVD-Audio、SACD等也僅在24-bit。
另外5.1、6.1的多聲道,也僅適合在打造家庭劇院,狹小、個人專用的書房空間並不合適,且只有一人使用的情況下甜蜜區(Sweet Spot)不需太大,用2.1的喇叭組態便能營造足夠的方位音效感,至於真正要如電影般的大範圍甜蜜區佈建,就要動用如SDDS(Sony Dynamic Digital Sound)的7.1組態,一般5.1也辦不到。
況且,在外出時的個人使用,或在車內等場合也不能用多聲道,除非是林肯級座車才有可能,一般房車休旅車同樣是雙聲道即足夠,而在隨身用、車用電子、DAB/DVB/DMB(數位音訊、視訊、多媒體資訊廣播)、GPS等興盛的今天,電子工程師必然要務實地對機外SPDIF、機內I2S等數位音訊介面有通透性瞭解才行。
附註:I2S之後亦有增強型規格,稱為I2S Enhanced。
▲圖說:要佈建電影院等級的大範疇方位音效甜蜜區,需動用SDDS(Sony Dynamic Digital Sound)的8聲道技術才行。(圖片來源:SDDS.com)